
Ambitious parallel applications impose new
demands on software development. Fortran 90 sup-
port many new features beneficial for scientific pro-
gramming. It is also a subset of High Performance
Fortran and compatible with Fortran 77.

Why Fortran 90?

Many arguments to describe plasma features in Fortran 77
dimension part(idimp,npmax), q(nx,ny,nzpmx)
dimension fx(nx,ny,nzpmx),fy(nx,ny,nzpmx),fz(nx,ny,nzpmx)
data qme, dt /-1.,.2/
call push(part,fx,fy,fz,npp,qme,dt,wke,nx,ny,npmax,nzpmx)
call dpost(part,q,npp,noff,qme,nx,ny,npmax,nzpmx)

Fortran 90 allows encapsulation into logically related units
use partition_module, plasma_module
type (species) :: electrons
type (scalarfield) :: charge_density
type (vectorfield) :: efield
type (slabpartition) :: edges
real :: dt = .2
call plasma_push(electrons, efield, edges, dt)
call plasma_dpost(electrons, charge_density, edges)

How do Fortran 90 features
benefit the development of
complex simulation soft-
ware (like Tokamak plasma
modeling)?

High Performance Object-Oriented

(1) Department of Physics and Astronomy
University of California at Los Angeles

Imaging and Spectrometry

Viktor K. Decyk(1,2)

Fortran 90 features modernize programming.

Encapsulate data and routines
across program units.

Modules

What is object-oriented programming?

The goal is to model software based on “real-world”
abstractions enhancing safety, portability, modifiabil-
ity, and understanding. This consists of analyzing
the problem, designing objects, and writing software
using a specific language.

Allow user-defined types to be
created.

Derived Types

Features like modules, use association, derived types,
array syntax, generic interfaces, overloading, and point-
ers simplify how problems are represented.

Simplifies operations on whole
arrays, or array components.

Array Syntax

A single call can act differently
based on the parameters.

Generic Interfaces

Supports module interaction.
Use Association

Support the use of dynamic data
structures.

Pointers/Allocatable Arrays

Many additional intrinsics and features exist that rede-
fine the nature of programming in Fortran!

Reprinted from PPPL web pages.

Programming in Fortran 90

Object-Oriented design models clarify application
organization.

and Charles D. Norton(2)

(2) NASA Jet Propulsion Laboratory
High Performance Computing Systems Group

Systems Technology Section (385)

Relationships among data abstractions are the focus
of programming, not procedure calls.

The answer is due to language features. Fortran 90 supports multidimensional dynamic arrays, array
operations, and other features that must be created explicitly in C++.

Fortran 90 object-oriented model.

C++ object-oriented model.

If the functionalilty is the same then why do these organizations look different?

How does Fortran 90 support OO concepts?

Modules represent classes while variables, created
from derived types in modules, represent objects.
Module routines take objects as parameters.

Electron Phase Space at T = 0, T = 148

0 20 40 60 80 100 120

Beam-Plasma Instability Experiment

Free-Expansion Experiment

Gravitational Experiment

Application development on supercomputers.

Plasma particle-in-cell (PIC) codes have been devel-
oped with these techniques on the IBM SP and Cray
T3E distributed-memory supercomputers using the
General Concurrent PIC algorithm.

How do Fortran 90 objects help here?

A moving particle beam is injected into a station-
ary background of higher density producing vorti-
ces, that are self-enhanced, in phase space.

Initial partitioning of bodies with uni-
form distribution with subsequent
clustering of bodies under gravita-
tional forces.

The electron-ion mixture expands
from a dense region into vacuum
under its own forces.

Object-Oriented techniques capture essential
abstractions (particles, fields, relationships) allowing
extension of codes to a variety of applications. This
enhances collaborations and promotes better and
safer software designs.

Sketch of object-oriented Fortran 90 parallel PIC code
PROGRAM beps3k
use partition_class, plasma_class
call MPI_INIT(ierror)
call species_init(electrons, qme, qbme, np)
call fields_init(cdensity, nx, ny, nz)
call fields_init(efield, nx, ny, nz)
do itime = 1,500
 call fields_solve(cdensity, efield)
 call plasma_getpe(energ, efield)
 call plasma_push(electrons, efield, edges, dt)
 call plasma_pmove(electrons, edges)
 call plasma_dpost(electrons, cdensity, edges)
end do
call fields_destroy(efield) ; call fields_destroy(cdensity)
call species_destroy(electrons)
call MPI_FINALIZE(ierror)
END PROGRAM beps3k

See for yourself!

How does Fortran 90 performance compare to
C++ on supercomputers?

Are all object-oriented features useful in scientific
programming?

Or write to us:
decyk@physics.ucla.edu
Charles.D.Norton@jpl.nasa.gov

Not all features of object-oriented design seem useful
for scientific programming. Inheritance has limited
usefulness while compostion of abstractions were
very useful.

Does Fortran 90 support interlanguage commu-
nication of objects with C++?

Fortran 90 typically exceeds Fortran 77 and C++ in
such applications.

Here, the KAI C++ compiler, considered the most
efficient, is compared to IBM’s compilers with the
most aggressive optimizations for a 3D parallel PIC
code. The C++ compilation lasted two hours com-
pared to 5 minutes for Fortran 90. (Yellow bars indi-
cate P2SC hardware optimizations.)

Yes, as long as C++ virtual functions are not used
since this construct modifies the object data storage
layout in a vendor-dependent manner. (The F90
sequence attribute is suggested.)

C++ and Fortran 90 inheritance can also be used
and member routines can be called.

Fortran 90 creates new opportunities to attack more
ambitious problems in a manageable way.

The major benefit...

Visit our web sites for more information:
http://www.cs.rpi.edu/~szymansk/oof90.html
http://www-hpc.jpl.nasa.gov

Fortran 2000 will have full object-oriented features
including single inheritance, polymorphic objects,
parameterized derived types, constructors, and
destructors.

What Lies Ahead?

Created:
09 / 05 / 97

